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Passive Scalar Advection in Burgers Turbulence:
Mapping-Closure Model

Bhimsen K. Shivamoggi1

Passive scalar advection in Burgers turbulence is considered. Mapping-closure model
based on the amplitudes is used. Advective stretching of scales is included. The sim-
pler nature of this problem affords a convenient framework to clarify some aspects
of mapping-closure analysis of coupled stochastic fields. The ability (or lack of it)
of the joint action of advective stretching and molecular diffusion to generate non-
Gaussian scalar statistics in Burgers turbulence in the absence of a non-Gaussian forcing
is investigated.
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1. INTRODUCTION

Considerable studies have been made on the advection of a scalar field θ (x, t)
by a stochastic velocity field v(x, t) (see Sreenivasan and Antonia, 1997; Warhaft,
2000; Shariman and Siggia, 2000 for recent reviews). Substantially non-Gaussian
statistics can arise for θ even when v is Gaussian (Kraichnan, 1994).2 One cause
of this different behavior has to do with the relative size of the dominant spatial
scales of scalar and velocity fields. If the scale of the advecting field is very small
compared with that of the fluctuations in the scalar field, its effect on the latter
will be like that of an enhancement of molecular diffusivity. But, if the scales are
similar, then possibilities of inducing non-Gaussian statistics in the scalar field can
arise.

Advective stretching leads to scalar field being drawn out into thin sheets.
However, if the advective stretching or the molecular diffusion acts alone, the
scalar and the scalar-gradient at a point remain statistically independent and the
one-point statistics of the scalar field described by the probability density function
(PDF) P(θ , x , t) remains Gaussian. On the other hand, if the advective stretching
and molecular diffusion act simultaneously, regions that have been highly stretched

1 University of Central Florida, Orlando, Florida. 32816-1364; e-mail: bhimsens@pegasus.cc.ucf.edu.
2 Falkovich et al., (2001) pointed out that the multi-point statistics of the advected scalar fields are

closely linked to the collective behavior of the separating Lagrangian trajectories.
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experience typically stronger diffusion than other regions. The scalar fluctuations
in the highly stretched regions thereby decay rapidly. This selective rapid scalar
decay induces a statistical dependence between the scalar and the scalar-gradient at
a point. So, in order to calculate a single-point scalar PDF, information concerning
the joint statistics of the scalar and its gradient are needed. This necessitates making
additional closure assumptions.

In order to deal with such difficulties, Kraichnan and coworkers (Kimura
and Kraichnan, 1993; Chen et al., 1989; Kraichnan, 1990) advanced the mapping-
closure method to determine PDFs of various quantities in homogeneous
turbulence. This method involves mapping a real stochastic field ψ to a Gaussian
reference field ψ0 at each instant t . The evolution equation for the mapping relation

ψ = X (ψ0, t) (1)

is to be derived exactly from the evolution for ψ so that the mapping relation (1)
may inherit the physics of the evolution in question. Knowledge of the mapping
relation (1) would then enable determination of the PDF of ψ as follows

P(ψ, t) = P0(ψ0)

(
∂ X

∂ψ0

)−1

(2)

where P0(ψ0) is a Gaussian PDF.
Applications of mapping-closure to statistics of velocity field governed by

Navier-Stokes dynamics and scalar field driven by such a velocity field are com-
plicated by problems associated with representation of the pressure field as well
as the divergence-free condition on the velocity field. Consequently, a full analytic
approximation is still forthcoming. To date, only phenomenological approxima-
tions exist, which have however yielded excellent fits to the PDF data for velocity
gradients (Kraichnan, 1990) and scalar gradients (Shivamoggi, 1995a).

Gao (1991a) considered the PDF of a passive scalar diffusing in homogeneous
turbulence by using the mapping-closure method and gave an exact analytical so-
lution for the mapping equation when the advective stretching of scales is ignored.
This solution yields scalar PDFs that relax to Gaussian distribution. Pope (1991)
generalized the mapping to consider a time-independent Jacobian of transforma-
tion while Girimaji (1992) considered evolution from more general reference fields.

The question of the effect of advective stretching of scales on the three-
dimensional scalar statistics has not been addressed and is a difficult one to re-
solve. In this context, some useful insights can be obtained by considering the one-
dimensional problem of scalar advection in Burgers turbulence though the ensuing
results are not readily applicable to the three-dimensional scalar-advection problem
(because there are significant differences between the two problems3 ). On the other

3 In the absence of diffusivity, three-dimensional advection by a solenoidal velocity field conserves the
total amount of the scalar, but the one-dimensional advection described by Eq (4) below does not.
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hand, scalar advection in Burgers turbulence appears also to be an interesting prob-
lem in its own right (Chertkov et al., 1997). Besides, the simpler nature of this
problem (compared with scalar advection by a three-dimensional velocity field) af-
fords a convenient framework to clarify some aspects of mapping-closure analysis
of coupled stochastic fields—a topic which has not yet been extensively explored.

2. PASSIVE SCALAR IN BURGERS TURBULENCE

This problem is governed by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(3)

∂θ

∂t
+ u

∂θ

∂x
= κ

∂2θ

∂x2
(4)

where ν is the viscosity and κ is the diffusivity.
Equations (3) and (4) show that the velocity gradient ∂u/∂x and the scalar

gradient ∂θ/∂x obey the following equations:(
∂

∂t
+ u

∂

∂x

)
∂u

∂x
= −

(
∂u

∂x

)2

+ ν
∂2

∂x2

(
∂u

∂x

)
(5)

(
∂

∂t
+ u

∂

∂x

)
∂θ

∂x
= −∂u

∂x

∂θ

∂x
+ κ

∂2

∂x2

(
∂θ

∂x

)
. (6)

The self-straining term on the right-hand side of Eq (5) leads to a steepening
of negative velocity gradient and, therefore, the formation of sawtooth waves with
shock fronts whose steepness is limited by the viscous term on the right-hand of
Eq (5). During this process, an initially Gaussian velocity field retains a nearly
Gaussian univariate distribution P(u) while the univariate distribution Q(ξ ) for
the velocity gradient ξ = ∂u

∂x becomes highly intermittent (Gotoh and Kraichnan,
1993, 1998) even at low Reynolds numbers.4

Equation (4) shows that the evolution of the scalar is based on the competition
between the diffusive relaxation and the advection processes. Equation (4) also

4 Burgers turbulence driven by a random force f (x , t) has been studied extensively (Bouchaud et al.,
1995; Polyakov, 1995; Chekhlov and Yakhot, 1995a,b; Gurarie and Migdal, 1996; Yakhot and
Chekhlov, 1996; Ivashkevich, 1997; Balkovsky et al., 1997; Boldyrev, 1997, 1998) because of the
possibility that this model might play a role in the development of turbulence theory similar to that
played by the two-dimensional Ising model in developing the theory of critical phenomena. For the
case of a white-in-time random force, this model has been shown (Chekhlov and Yakhot, 1995a,b)
to exhibit statistical properties similar to those of the classical three-dimensional turbulence such as
the Kolmogorov energy spectrum. On the other hand, intermittency in this system is caused by the
strong shocks underlying the concomitant dynamics. The multi-fractal formulations of compressible
turbulence (Shivamoggi, 1995b,c, 1997) fully reproduce, in the ultimate compressibility limit, these
main features of Burgers turbulence.
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shows that the scalar is conserved along the Lagrangian trajectories in the absence
of molecular diffusion. Consequently, the local maxima of the scalar field do not
grow in the absence of pumping (Chertkov et al., 1997). This would imply that the
statistics of the scalar are likely to remain Gaussian.

The convective stretching term on the right-hand side of equation (6) leads to
a steepening of negative scalar gradient when it is in the same direction as that of
the velocity gradient. This provides a mechanism for drawing the scalar field into
thin sheets in Burgers turbulence.5

On the other hand, Eq (6) can be written in the source-free form-

∂

∂t

(
∂θ

∂x

)
+ ∂

∂x

(
u

∂θ

∂x

)
= κ

∂2

∂x2

(
∂θ

∂x

)
(7)

which implies that the scalar gradient, unlike the scalar, is globally conserved
in the absence of molecular diffusion. Therefore, the local maxima of the scalar
gradient can grow even in the absence of pumping and possibilities of generation
of non-Gaussian statistics for the scalar-gradient PDF exist.

3. THE AMPLITUDE MAPPING CLOSURE MODEL

The mapping-closure scheme is based on the premise that Gaussian reference
fields can be distorted into dynamically evolving non-Gaussian fields for the ve-
locity and scalar. Thus, the velocity and scalar fields are taken to evolve according
to the amplitude mapping

u(x , t) = U[u0(z), t] (8)

θ (x , t) = 
[u0(z), θ0(z), t] (9)

where the advective stretching is modeled through a nonlinear transformation
between the reference-field scale z and the evolving-field scale x given by

dz

dx
= J [ξ0(z), t] (10)

and

ξ0 ≡ ∂u0

∂z
.

In the mapping described by Eq (8), the stretching function z has been taken
to be the same for both the velocity- and the scalar-fields.6 Further, the effective

5 Scalar advection by Burgers turbulence has an interesting feature that follows from the fact that one
solution of Eqs (3) and (4), for Prandtl number unity (κ = ν), is u = θ . In this case, both the velocity-
and the scalar-fields have Gaussian single-point PDF! So, the development of non-Gaussian scalar
statistics in Burgers turbulence is predicated on the Prandtl number being non-unity.

6 Though this step implies forcing a very special relation between the velocity- and the scalar-gradients,
it may be mentioned that this step has been found (Shivamoggi, 1995a) to be compatible in generating
reliable scalar-gradient statistics in the three-dimensional scalar-advection problem.
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intensification ratio J is assumed to depend only on ξ0 and not on η0
(≡ ∂θ0

∂z

)
,

which is motivated by the basic premise that the advective stretching is caused by
the velocity gradient. The formulations in the following involve J only through
some kind of averages (in the coefficients di , see (14) below). Therefore, we will
not consider explicitly an equation for J , which would fully incorporate the special
circumstance that u satisfies Burgers’ equation, namely, Eq (3).

Equations (8) and (9) determine the statistics of u and θ via the mapping of
Gaussian reference fields u0(z) and θ0(z) at each (z, t), and describe two kinds of
nonlinear distortions underlying the mapping closure:

• transformations of amplitudes (the functions U and 
),
• change of measure associated with advective squeezing and stretching of

the scale z to give x .

The amplitudes U , 
, and the Jacobian J of the coordinate transformation
from z to x are all non-stochastic functions that are determined at each point in
the z-space (in which the reference fields live) by local properties — u0, θ0, ξ0

and η0. The velocity gradient ξ = ∂u/∂x at each x is statistically independent of
velocity u at that point. We consider nonlinear dependence of 
 and θ0 as well
as nonlinear mapping of the z-space to investigate if they have the potential of
generating non-Gaussian one-point scalar statistics in the presence of selective
rapid decay of scalar in regions that have been strongly strained.7

We obtain from (8) and (9),

ξ (x , t) ≡ ∂u

∂x
= ∂U(u0, t)

∂u0
ξ0 J (ξ0, t) ≡ U (u0, ξ0, t) (11)

η(x , t) ≡ ∂θ

∂x
= ∂
(u0, θ0, t)

∂θ0
η0 J (ξ0, t) + ∂
(u0, θ0, t)

∂u0
ξ0 J (ξ0, t)

≡ S(u0, θ0, ξ0, η0, t). (12)

(10) implies that the relation of the joint PDF for (u, θ , ξ , η) to that for (u0, θ0, ξ0,
η0) can be written as

P(u, θ , ξ , η, t) = P0(u0)P0(ξ0)P0(θ0)P0(η0)

{
∂U
∂u0

∂U

∂ξ0

∂


∂θ0

∂S

∂η0

}−1 N (t)

[J (ξ0, t)]2

(13)

where N (t) is a normalization factor

N (t) ≡
{∫

P0(ξ0)

[J (ξ0, t)]2
dξ0

}−1

.

7 Linear dependence of 
 on θ0, in the presence of advective stretching, on the other hand, is able to
generate non-Gaussian statistics in the scalar-gradient field (see Appendix). Linear dependence of U
on u0 is also able to generate non-Gaussian statistics in the velocity-gradient field (Kraichnan, 1990).
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Differentiation of (10) yields

∂2θ

∂x2
=

(
J 2 ∂η0

∂z
+ η0 J

∂ J

∂ξ0

∂ξ0

∂z

)
∂


∂θ0
+ η2

0 J 2 ∂2


∂θ2
0

+
(

J 2 + ξ0 J
∂ J

∂ξ0

)
∂ξ0

∂z

∂


∂u0
+ ξ 2

0 J 2 ∂2


∂u2
0

+ 2ξ0η0 J 2 ∂2


∂θ0∂u0
.

Using the Gaussian relations 〈
∂ξ0

∂z

∣∣∣∣ u0

〉
= −

〈
ξ 2

0

〉
〈
u2

0

〉u0 (14)

〈
∂η0

∂z

∣∣∣∣ θ0

〉
= −

〈
η2

0

〉
〈
θ2

0

〉θ0 (15)

where 〈·|ψ0〉 denotes the ensemble mean conditional on given value of ψ0 at (z, t),
we have from (12)〈

∂2θ

∂x2
|u0, θ0

〉
= −[d1(t)θ0 + d2(t)u0]

∂


∂θ0

+ d3(t)
∂2


∂θ2
0

− d4(t)u0
∂


∂u0
+ d5(t)

∂2


∂u2
0

+ d6(t)
∂2


∂θ0∂u0
(16)

where

d1(t) ≡
〈
η2

0

〉
〈
θ2

0

〉 N (t)

d2(t) ≡
〈
ξ 2

0

〉
〈
u2

0

〉 ∫
η0 J

∂ J

∂ξ0
P(ξ0)P(η0)

N

J 2
dξ0dη0 = 0

d3(t) ≡ 〈
η2

0

〉
N (t)

d4(t) ≡
〈
ξ 2

0

〉
〈
u2

0

〉 N (t)

(
1 +

∫
ξ0 P0(ξ0)

1

J

∂ J

∂ξ0
dξ0

)
(17)

d5(t) ≡ 〈
ξ 2

0

〉
N (t)

d6(t) ≡ 2
∫

ξ0η0 J 2 P0(ξ0)P0(η0)
N

J 2
dξ0dη0 = 0.

Using (8), (9), and (14), Eq (4) leads to

∂


∂t
= −κd1(t)θ0

∂


∂θ0
+ κd3(t)

∂2


∂θ2
0

− κd4(t)u0
∂


∂u0
+ κd5(t)

∂2


∂u2
0

. (18)
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The effect of advective stretching is contained in the parameter d4(t). Note that Eq
(15) admits a solution for which the mapping function 
 is a linear function of θ0

and u0 signifying a Gaussian statistics for θ . It is pertinent to ask if other solutions
tend to this solution in some asymptotic limit.

In order to facilitate finding these solutions, we introduce the transformation

(u0, θ0, t) → (ζ (u0, θ0, t), τ (t)) (19)

where

ζ (t) ≡ u0T1(t) + θ0T2(t). (20)

Equation (15) then becomes

∂


∂τ
τ ′ + (u0T ′

1 + θ0T ′
2)

∂


∂ζ
= −κd1θ0T2

∂


∂ζ
− κd4u0T1

∂


∂ζ

+ κ
(
d3T 2

2 + d5T 2
1

)∂2


∂ζ 2
. (21)

The solutions of Eq (17) can be obtained by transforming it into either diffu-
sion equation (Gao, 1991b) or Hermite’s equation (Gao and O’Brien, 1991) (see
also Takaoka, 1999 who developed the corresponding formulation for the velocity
field evolving according to Eq (3)).

3.1. Reduction to Diffusion Equation

We choose here, therefore,

τ ′ − κ
(
d3T 2

2 + d5T 2
1

) = 0

T ′
2 + κd1T2 = 0

T ′
1 + κd4T1 = 0. (22)

Equations (18) can be solved formally to give

T2(t) = e−κ
∫ t

0 d1(t ′)dt ′
(23)

T1(t) = e−κ
∫ t

0 d4(t ′)dt ′
(24)

τ (t) = κ

∫ t

0

[
d3(t ′)T 2

2 (t ′) + d5(t ′)T 2
1 (t ′)

]
dt ′. (25)

Using (18), Eq (17) reduces to diffusion equation

∂


∂τ
= ∂2


∂ζ 2
, (26)
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the solution of which is given by


(ζ, τ ) = 1

2
√

πτ (t)

∫ ∞

−∞

(β, 0)e− [β−ζ (u0,θ0,t)]2

4τ (t) dβ. (27)

Noting from (19) that

t = 0 : T1 = 1, T2 = 1 and τ = 0 (28)

we have

t = 0 : 
 = 
(ζ0, 0), (29)

where

ζ0 ≡ u0 + θ0.

Following Pope (1985), and recalling (22) and (23), consider the initial con-
dition


(ζ0, 0) =
{−1, ζ0 < 0

1, ζ0 > 0.
(30)

(21) then becomes


(ζ, τ ) = erf

[
ζ (t)

2
√

τ (t)

]
. (31)

Now, taking P0(ζ0) to be Gaussian

P0(ζ0) = 1√
2πσ

e− ζ2
0

2σ2 (32)

the relation

P(θ , t)
∂θ

∂ζ

∂ζ

∂ζ0
= P0(ζ0) (33)

then shows that θ remains Gaussian even in the presence of advective stretching.

3.2. Reduction to Hermite’s Equation

We choose here, therefore,

τ ′ − κ
(
d3T 2

2 + d5T 2
1

) = 0

T ′
2 + κd1T2 − κ

(
d3T 2

2 + d5T 2
1

)
T2 = 0

T ′
1 + κd4T1 − κ

(
d3T 2

2 + d5T 2
1

)
T1 = 0.

The first of equations (28) may be formally solved to give

τ (t) = κ

∫ t

0

[
d3(t ′)T 2

2 (t ′) + d5(t ′)T 2
1 (t ′)

]
dt ′. (34)
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Exact solutions for T1 and T2 have not been found.
Using (28), Eq (17) reduces to Hermite’s equation

∂


∂τ
= ∂2


∂ζ 2
− ζ

∂


∂ζ
(35)

the solution of which is given by


(ζ, τ ) =
∞∑

n=0

e−nτ (t)

√
2π n!

(∫
e−β2/2 Hn(β)
(β, 0)dβ

)
Hn(ζ (u0, θ0, t)), (36)

where Hn(x) is the nth-order Hermite function

Hn(x) = (−1)nex2/2 dn

dxn
(e−x2/2). (37)

(31) shows that we have for large t (or large τ , from (29))


 ∼ ζe−τ (38)

so that θ relaxes to Gaussian even in the presence of advective stretching.

4. DISCUSSION

In this paper, we have investigated the effect of advective stretching of scales
on the scalar statistics. To facilitate analysis, we have considered scalar advection
in Burgers turbulence governed by Eqs (3) and (4). Writing Eq (4) in the scalar-
conserving form

∂θ

∂t
+ ∂

∂x
(uθ ) = κ

∂2θ

∂x2
+ θ

∂u

∂x
(39)

one notices that non-Gaussianity of θ can arise from one more of the following
aspects:

• the source term θ ∂u
∂x , which is a compressibility effect;

• the advective stretching of scales,
• the introduction of a non-Gaussian forcing into the system.

The amplitude-mapping-closure formulations in Section 3 show that neither
the compressibility effect nor the advective stretching scales is able to generate
non-Gaussian scalar statistics in Burgers turbulence. So, the introduction of a
non-Gaussian forcing appears to be the only way to generate non-Gaussian scalar
statistics in Burgers turbulence in the amplitude-mapping-closure model. Similar
results have been given previously with other closure schemes (Chertkov et al.,
1997).
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APPENDIX

Linear dependence of 
 and θ0 (and U on u0) in the presence of advective
stretching turns out to be able to generate non-Gaussian statistics in the scalar-
gradient field.

Suppose that the velocity and scalar fields evolve according to the linear maps:

u(x , t) = c1(t)u0(z) (A.1)

θ (x , t) = c2(t)θ0(z) (A.2)

with

dz

dx
= J [ξ0(z), t]. (A.3)

We obtain from (A.1) and (A.2),

ξ = c1(t)J (ξ0, t)ξ0 (A.4)

η = c2(t)J (ξ0, t)η0. (A.5)

Equations (5) and (6) then imply the following evolution equations for the
stretching function J (ξ0, t):

∂ J

∂t
= −c1|ξ0|J 2 − νk2

d J 3 (A.6)

∂ J

∂t
= −c1|ξ0|J 2 − κ k̂2

d J 3 (A.7)

where

k2
d ≡

〈(
dξ0

dz

)2
〉

〈
ξ 2

0

〉 , k̂2
d ≡

〈(
dη0

dz

)2
〉

〈
η2

0

〉 .

The consistency between Eqs (A.4) and (A.5) requires that the Prandtl number
must satisfy

ν

κ
= k̂2

d

k2
d

(A.8)

which is a compatibility condition for a linear map for scalar advection in Burgers
turbulence.

We then have from Eqs (A.4) and (A.5) in the stationary state, on taking
c1(t) = 1,

J = |ξ0|
νk2

d

. (A.9)
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Using (A.7), we obtain from (A.3b)

|η| = |ξ0||η0|
νk2

d

. (A.10)

If ξ0 and η0 are assumed to be multi-variate Gaussian fields given by the PDF:

P(ξ0, η0) = 1

2πσ1σ2

√
1 − ρ2

e
− 1

2(1−ρ2)

[
ξ2
0

σ2
1

− 2ρξ0η0
σ1σ2

+ η2
0

σ2
2

]
(A.11)

where

σ 2
1 ≡ 〈

ξ 2
0

〉
, σ 2

2 ≡ 〈
η2

0

〉
, ρ ≡ 〈ξ0η0〉

σ1σ2
,

then, following the development in Shivamoggi (1995a), (A.8) leads to the follow-
ing non-Gaussian PDF for the scalar gradient:

P(η) = νk2
d

πσ1σ2

√
1 − ρ2

e
ρ|η|

σ1σ2(1−ρ2)/νk2
d K0

( |η|
σ1σ2(1 − ρ2)/νk2

d

)
(A.12)

K0(x) being the modified Bessel function of the second kind.
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